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,. - Summary

-'For symmetric stable sequences, notions of innovation and Wold decomposi-

tion (WD) are introduced, characterized, and their ramifications in prediction

theory are discussed. As the usual covariance orthogonality is inapplicable,

the non-symmetric James orthogonality is used, thus leading to right

and left innovations a d Wold decompositions, which are related to regression

prediction and least p moment prediction,respectively. Independent innova-

tions and WD are also characterized;and several examples illustrating the

various decompositions are presented. ,/- -,A-- -/ i .
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0. Introduction

The Wold (or orthogonal) decomposition of Gaussian and other second-order

stochastic processes is a (fundamental) tool in their study, and in particular

th
in their predictions. For stable and other p -order processes (with p <2)

2
the lack of second moments renders the usual L notion of orthogonality inap-

plicable, and thus orthogonal decomposition of these processes does not even

make sense a priori. There are, however, notions of orthogonality in Banach

spaces; and one of these, due to G. Birkhoff and popularized by R.C. James

5], seems appropriate in this context. Still, the situation is much more

complex than in the second-order case, as we shall see shortly.

The purpose of this paper is to examine James' orthogonality in the con-

text of symmetric a-stable (SaS) random variables and processes; and to de-

fine appropriate notions of Wold decomposition for SUS sequences and charac-

terize those sequences which can be so decomposed. The role of independence

is also examined. (Orthogonality implies independence in Gaussian systems,

bL.t not in stable systems!)

The organization of the paper is as follows. Section 1 includes some

preliminary facts, which clarify the role of orthogonality in stable systems.

We give some characterizations of orthogonality (Corollary 1.3); for example,

we find that for jointly SaS r.v.'s X and Y, X is orthogonal to Y if and only

if E(YIX) =0. We also characterize the linearity of a conditional expectation

in a stable system in terms of an appropriate orthogonality.

In Section 2 we define two kinds of innovations, right orthogonal and

left orthogonal, and Wold decompositions for SOLS sequences, and give neces-

sary and sufficient conditions for their existence. It turns out that a

right Wold decomposition exists, if and only if right innovations exist, if

%.
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and only if the regressions on the past are linear (Theorem 2.3). Left in-

novations always exist (Proposition 2.8), while a left Wold decomposition

exists if and only if the metric projections on the past are linear (Theorem

2.10). We also define "non-linear" innovations and Wold decompositions.

Right nonlinear innovations and Wold decompositions always exist (Theorem

2.2). Left nonlinear innovations always exist (Proposition 2.8) and we note

that a left nonlinear Wold decomposition exists whenever a left Wold decompo-

sition exists. The right and left innovations and Wold decompositions have

precisely the properties required to solve the problem of predicting m-steps

ahead based on past observations, and they correspond to regression prediction
th

and best prediction in the usual p order moment sense (1 <p <L) respectively.

Thus when a right or left Wold decomposition exists, the m-step linear regres-

sion prediction or best linear prediction has a fairly simple solution. How-

ever, when a Wold decomposition does not exist, then the prediction problem

* becomes difficult indeed as is illustrated by the case of harmonizable stable

sequences (cf. [ 1 ].

In Section 3, an independent decomposition is introduced and spectral

necessary and sufficient conditions are given for its existence. Section 4

consists entirely of examples, intended to illustrate the various decomposi-

tions and some of the complexities involved.

r
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1. Orthogonality and Stable Systems

A collection of random variables {X t c T1 defined on (QZ,P) will be called
t

join t' symmetric o-stable or a syrretric a-stable process if each finite real-

linear combination XA.iX t has a symmetric stable distribution of index a. We ab-
3

breviate "symmetric (a-stable" by SotS. If X is SaLS, then for O<p<at, we have
EIXj p < -, so that a StS process is a pt order process, i.e. IXt _ L(QP).

A useful tool in the analysis of SuS processes is the so-called spectral represent-

ation theorem. The version we will need here says that if {Xn nc cA} (where A is

finite or denumerably infinite) is a SQS process, then there exist functions

if n EcAl c [0,1] such thatn --

n n
-log E exp(i \.X ) --" Afn

j=l , nj n Ot.
j=l jn

Further, if IZ(s): sc- [0,l]} is " O-stable motion," i.e., an independent incre-

ments SAS process with -log E exp itZ(s) = slti, then the process {Y I defined by
n

Yn --il(s)dZ~s)
n = On

is stochastically equivalent to {X I, and we say that {X I is represented b;
n n

{f }. The spectral representation was first expressed in this form by Kuelbs

7 ]; for more information consult [4 1.

Now let L be a normed linear space, with norm . For x,yc L, we say

that x is (James) orthogonal to y, written x ± y, if

1x+Xyll a lx1i

for all scalars ). For subspaces M and N of L, we say M IN if min for all mc M

and n E N. If L is in fact a Hilbert space, this defines the usual "inner product" S

orthogonality. For general Banach spaces, however, this is a non-symmetric

*.-- .-. . ..- %.... .--, ... .. --...- . ..-. -- -. -. v . -.----. *"-.-: - v - . .-.- . .. - ..-.--- -- -. ..-. . - ...- .,.
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notion, i.e. x may be orthogonal to y, but not vice versa.

th
This definition makes sense for random variables with p moments in that we

may take (L, 1111) to be LP()with the usual norm. For X and Y in LP(Q), if X

is orthogonal to Y, we will write X I Y. The relation I is well-defined for
p p

jointly SaS random variables as long as 1 -p <a

The following known characterization of orthogonality will be useful for us.

* For a proof, consult ' 13 ; Thm. 1.11, p. 56 and Lemma 1.14, p. 92]

th
Lemma 1.1. Let X and Y be random variables with p moments, p >1. Then X.± YP

* if and only if EX < p - I > Y = 0.

Here, we use the convention that for complex z and real q, z denotes

jzj q -l z  (We take 0< q > = 0.)

A point evident from this lemma and crucial for us is that the orthogonality

. relation is "linear" in the second argument, but not in the first, i.e. X ± Y
p

and X i Z implies X I (aY+bZ) for all a,b -- but we may have X J Z and Y ± Z-p P P P

. without X+Y i Z.
p

The next lemma is somewhat curious.

Lemma 1.2. Let a >1 and {X,Y} be jointly SaS represented bp {f,g}. Then for

°p

E_ Y f g dm

EIXI p  f~fI dm

(m s Lebesjue measure on [0,1] ).

Remark. Note that the right-hand side does not depend on p. It follows from this

and Lemma 1.1 that for such X and Y, X i Y for some pfr (I,c) if and only if X
p P

for (/11 such p, if and only if f i g. We shall henceforth say in this case simply

that X is orthogonal to Y, omitting mention of p, and write X ±Y.

................................................................................. .- V
€, -~.......-.-..... ......,, .-... -",-.-...- ..."-'" .. . .-.. "-- 3':%--.. ..- . . -. .- :.- .°--
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itX O
by~~~ ~ _a ihE

Proof of Lemma 1.2. Let by 0 wit Eew

E explit(X +AY)J ex[=1 + gjI~ which shows that X+ NY is distributed as

~f + Xg ( X0 Therefore,

JvjX + AYIP 11jf + XgflpEjX 1p.

Differentiating this expression with respect to Aand putting A =0, we obtain

when 1 <p <'t that

<n-i> _p - r<->,i-ra1

E X r E1X~jiIjf JjpCff -g dm EjXI lfajf ffa >g dm

proving the lemma. f

It follows from Lemma 1.2 that

E (YIX) = rI. dm EX ~y X
jif dm jp

where the first equality is established by Kanter [6 1. This combined with

1.#mma 1 1 show-

Corollarv 1.3. ;'-r StS {X,Y reprcsernted b?, {f,g} and 1lp<ot we have

x~ ~ Y X 1  E(Y1X);

EIxlP

~ ~t~:' (ire eqzuioalent:

=(IX 0

oj~) ff 1  g dm =0.

We note that if X and Y are independent SixS variables, then necessarily

X LY and Y IX. The converse is not true, however, since Schilder [121 has
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shown that X and Y are independent if and only if their representatives f and g

hiave a.e. disjoint support (i.e. f-g=0 a.e.). Clearly there exist f and g with

* jf g dm =0 yet f-g # 0 a.e. In fact, orthogonality implies independence

* orl. in Gaussian systems, in the following sense.

Pro osition 1.4. Let 1 < a !52, and let L be a c~oaed linear space of SaxS random

1, 'c ls with dihm(L) > 1. Suppose that whenever X,Y E L and x iY, then X is in-

* e ~dntof Y. Then Q = 2, i.e. L consists of mean-zero Gaussian random varia-

* Proof. Choose an arbitrary non-zero X EL and let 1l<p <a. By the hypothesis

*dim(L) >1 we may find ZEL such that Z4XX for any ) c]R. Let B =EX <->Z/EIXip

This gives that EX <-J (Z -6~X) = 0. Since Z - 3X 0, we may find a constant b so

that Y b(Z -BX) is distributed as X. Since EXplY =0, Corollary 1.3 shows

* X .LY, and so X and Y are independent by hypothesis. This implies that (X,Y) is

distributed as CY,X), and hence that

E(X + Y) <p-'>X - E(X + Y)<-> - E(X + Y) <p1> = 0

Hence X +Y .I X -Y, and again this means that X +Y is independent of X -Y.

Now let c be such that 0(t) = E exp(itX) = ex(cto = E exp(itY). Then

by independence we have thaL for all t,

E exp{i[t(X+Y) + t(X -Y'1 I] E exp{it(X +Y)I *E expfit(X -Y)i

4
W t = exp(-4cjtl )

* and

Fexpf i[t(X +Y) + t(X-J = E expli2tX)

4t~(20) = ex(- c~ I)
aX

Therefore 2 4 and - 2.

The equivalences of Corollary 1.3 can be seen in a broader context. Let
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1<p < , and let {X t t, TI be any ScaS process represented by f t c T"

(T here is arbitrary). Fix an arbitrary subset S of T, let t E T\S, and define

L(S) spfx : s, S1 and 1'(S) = sp{f s S . The following rcstilt
s(2) s

gives necessary and sufficient conditions for the conditional expectation to be

linear, i.e. to belong to L(S).

Proposition 1.5. The f'oilowin ; ae equivaZcnt:

(i) E(X IXs : s c S) c L(S).t s.

(ii) There exists X L(S) suoh tkat L(S) i X - X (in which case

E(X tX s S) = X).

(iii) There cxists g c L'(S) such that L'(S) -LX f - g (in which case
E(X IX: s S S) it rureeented by g) .

P-oof. Let J be the spectral representatior, ma, for {X 1, i.e.TO(X ) - f
0 0 t t

Use the same argument as in the proof of Lemma 1.2 to see that for any t.c T W
3

and scalars .,

n
I X [l = I X t ..flix 11

jl j tj hp( )  L t p(Q)

where X 0 is as in Lemma 1.2. Putting c = X0 11 p(, this shows cJ0 extends by

linearity and continuity to an isometry cJ of L(S) onto L'(S). Hence (ii) and

(iii) are equivalent.

We show (i) and (iii) are equivalent. Let Y by any arbitrary element of

L(S), and define h = J(Y). (Or equivalently, let h be arbitrary in L'(S) and

define J = J For (u) = E exp[i(uX t +Y)], we have

(u exp uf + h 1, and thus, putting X = E(XtIX: s, S), that,u xp -[u t  + t s.'

. . . . . .

- - , ". , . -' '..'.'..','..'.',.'-'-.'-" ".' .''.. " . " ,.".d?.'.. ,,' ,.. . . . ..... .... .. '.. . . . .,.. . .,.. . .'.. . . . .. .. .-.. . .'.. . .'.. .'-..



1 .6

E eX EX e' = -i'0 expf-lihI~ ~

t ci t

Now for arbitrary XFL(S), let g =J(X). (Again, we may let g, L'(S) and define

I- . (g)) Define IQ(u) E exp~i(uX+Y) I, and note that

y)(u) =exp[-!jug+ h~K1 and

Ee X = i() ioexp[-jjhj] f)- g dmn.

Fhis gives

iY(X X icexp[-fhIIjj'fh < ' 1 >(f- g) din.

Since both X and X are measurable with respect to Q{X(s): s'-SI, we have that

iY
=Nif and only if Ee (X - X) =0 for all Y cz L(S) (see, e.g. 8] or (101)

This fact and Lemma 1.1I appl ied to the last equation give us the equivalence of

(i) and (iii), proving the proposition.

in particular, this shows how the linearity of regression is related to

orthogonality.

Corollary 1.6. -';c -Il)"oing air

() E(X IX s 6S) 0.
t 5

(:)sp{ s~S i.

LP(Q)

(Cii) spf s S1 I1 f
s Ui t

L



2. Orthogonal Decomposition of Stable Sequences

Throughout this section we assume 1 <(I<2 and take p such that I <p< Also

we let {X r<n <-I be a SOLS sequence on (S ,Z,11). We define the linear spaces
n

of the sequence:

L= -{Xk k n}Ln s kLP(P),

L nrL
-00 nn'

and the corresponding nonlinear spaces:

L n Lp(QjZ n9P)

n n

wherke c-ix k- n't. Note that L, consists of SaS random variables, whileL
n k9 n n

conta ins much more. Note also that since for every Xt sp{ < <n m with
n

representative f L we have, as in thc2 proof of Lemmna 1.2, Ilx!l Cyff

for some constant C = I~xQII depending only on p and not on X, the choice of
p LP(Q)

p in (I,_ ) throughout the following is immaterial.

We will be concerned with the orthogonal decomposition of these spaces. Our

notation, which is somewhat non-standard, is as follows. For a Banach space ~

and closed spaces MI.M2 . the syVn'1)I M +. +N(or n' M denotes the sub- -12n ... n

space Ix x: n -'Ij 1 j <ni. Also, M I+ M + .. (or XZ N ) is defined

yn ,~nto betesbsae1n'j M Writing J M .. (or M~ M.) meanshen th susae *+ - n j i -

that M M i+ .. and also that
A n

(M+ MN I (M M..+ for all 1 5k<n. (2.1)
I k k+l n

Writing M P...4) (or n = 4 ",I.) means that M M ... and that
In j~~ 11n



2.2

(M +'' M+k+l) .I (M + + M ) for all 1 5k <n, (2.2)

i.e., that M M 4...4 MI. Thus the statements l M1  M2 and l = M 2'n 1 2= M 2

are, in general, distinct. Writing M 4 'j (respectively, M =l M.)""j=l -
" Mj (rsetvl, =l M.

O
will denote that Ai = Zj=Mj and further that (2.1) (respectively (2.2)) holds

for all n.

If Al = l M Mj and we pick 0 # x. M., it follows that {x.} forms a basis

for its closed linear span, i.e. each x csp{x: j=1,2,...} has a unique norm-

convergent expansion x = Zj=1 X x for some scalars X. This is so because aJ

necessary and sufficient condition for {x,} to be a basis for its closed linear
J

span is the existence of K<- such that for all n, m!n, and scalars 3.,

- _ ,.lxj I K11 .n= j= 1 6jxj (see, e.g. [14]); and, because of orthogonality,

I n m n m"1 [ j jxjl 11 III x + i jxj " 1I 1 j x j11
j=l j=m+l j=l

The same argument cannot be made in the case M = X * M...j=l jM '

Right Innovations and Wold Decomposition

We will say that {X } has right innovations if for each n there is a sub-n

space N so that L = L + N . N is necessarily of dimension one or zeron n n-l n n

(by an elementary argument). Similarly, we say that {X } has right non-ln.'zar
n

innovations if for each n there is a subspace N so that L = L e Nn n n-1 * n

We say that {X } has a right Wo~d decomposition if there are subspaces N ,

-"< n < 1, so that for each n, L = (Z N k) L L iN for all m >n,
n k= - n-k - n m

and further each Z r k 0 * N has an LP-convergent expansion Z O W
k=0 4- n-k k=0 n-k'

Wj" N. which is then necessarily unique. In this case it is easy to see that
jw

we can write X = Y + Z , where
n n n

. *.°*°*
.°

• - - -. .. , ' -? . ,. ,: ." ,: .: '-.., .- .... : . ,, ' . .v . ...-.,. v . ..- -, -.-. .v,. .. .... , .- .. , ...-. . ...,.., ....



2.3

(i) {Y } and {Z I are jointly SOS processes,
n n

(ii) {y } L (the "remote past") and {Y} . {Z n,

(iii) there exist _ c N. and a c IR so that Z = a
j j k,n n k=0Ok,n n-k

In the case that X is stationary and not completely deterministic (i.e.,
n

L # LO), we may choose 1KjI = 1 and claim that a is independent of
0 LP kn

n, i.e. Z is a moving average of an "orthonormal sequence".n

Similarly, we can define right non-Zinear Wold decomposition by requiring

the existence of N so that Ln= ( k ;  Nn) 4 L L ± N for m >n, and
n n k= 0 ( n-_k L n m

with the property that each Z E Zk 4 N has a norm convergent expansion
k=0 n nk

Z = kW nkW E N ,which is then unique.k= -'j j'

The first result, Proposition 2.1, is the key ingredient to the proof that

right innovations, linear or non-linear, imply the corresponding Wold decompo-

sition (see Theorems 2.2 and 2.3). This proposition is implicit in [ 21 and

t 31; we include a proof here for completeness.

.-

Proposition 2.1. Suppose that Ml is a closed subspace of some L space, p > 1,

ancd that there exist closed subsraces M and 0 of M with
n n

9.°

= s. •0 .. 0 for each n 1. Then M = (Z 0 0) (ri Mn) and each
n n1 n1 - n n

k 0 has a unique norm convera;ent expansion k = nO , 0 0
n=l n n1 n n n

Proof. Define M = ni K = 0 .. 01, and K = u. We first show thatco n n co n n

M = l . K_. Clearly, Mo ,. K for each n, and by continuity, M. L K0. Now
n

for x. ,l, write x m + k with m Md , k c K . Since m .Lk we have that
n n n n n n n

limn11  lim + knii = Jixil and Ilk n1 < lIx-m u 2JlxJl.

The sequences mn  and k , being norm bounded in a reflexive Banach space,

have simultaneously weakly convergent subsequences, say {m } and {k } with
n n.

2,

-.-.- i. ..v''.--.v v v. . . . . .. v ' '-: "-i-¢ '." 2... -.- -. .i?.i.": .". "  ..- "-il-'-"'iv .-. -i" -

-'.' -'..--' .'.-.% ''.-.''.-''..-.. . . . ..- '.... .. -,.-.-, -... .".'......v. .. "."......" ."..... .".. . . . . " ... ,.".. .... ."..:,'..



Z -7 ; - _ _W

2.4

weak limits mo. and k., respectively. It is clear that x = m + k., and that

k c K , proving M = M 0 K
0o -0

It remains to show that each element k , K., has a unique norm convergent

expansion k = 0 o E 0 . For each n we can write k = m + k uniquely
n n n n

where m n M and k n K . In turn we may write k = o +...+ o uniquelyn n n n n 1n

with o. r 0 . Define the operator Qn: K - K by Qnk = k . It is easy toJ j n nn n

see that QnQt = Qn " Also by orthogonality we have that

IIQ k <- flk - QnkJ + Jlkil = 1im 11 + Jjkl 5 Jim + k 11 + llklJ = 2JjkJJ

so that {Q } is a bounded sequence. Clearly, s-lim Q k = k for any k c tuK
n* mm

Hence, by continuity, we have for any k c K that

n oo
k s-lim Q k = s-Iim ' o. = 0 I]

nn n-o i=l n=l

Theorem 2.2. {X } h,. ri7ht non-7.incoar innooations and a ri."ht non-linear
n

* W'oZd dlecomposition.

* Proof. Note that for each n, Ln I = {E(XJZ n): X E L }. Define
n-l - n

Nn = {X - E(XJZnI): XEL }. Clearly, each element of L is the sum of an-n -in n

element of L n_ and an element of N n To see Ln I ± Nn , let X L n andn-. n" n- ' n-i

Y , and note that EYE~_) = 0. Hence,

<PJ < P> -i>

EX-Y = EE(x<-YZ;_ I = EX< E(YIn I  = 0

* and thus {X I has right non-linear innovations.

To see that {X I has a right non-linear Wold decomposition, fix k and note
n

that by the argument above

Lk I k-I k

+-N ) N~ k

(N N)
= Lk- k- k)

- :?.'"i - . .'-'.7. ';i i ,- ..'..% :;----- .,:.-, ,-"-/." , , . . " ... . .... -.. .... .. "
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k-n k-n+1 k

Now identify L with M and Nn with 0 of Proposition 2.1. "
k-n n k-n+l n

The next result is somewhat more interesting.

Theorem 2.3. The foltowing are equivalent.

(i) {X } has a right Wold aecomposition.n j

(i?-) {X } has rzght innovations.n

(ibii) E(X n+lIxn  X n_*...) E Ln for each n, i.e. regressions on the

past are Linear.

Proof. The "linear version" of the proof of the second statement of Theorem

2.2 shows that if {X I has right innovations it has a right Wold decomposition.
n

The converse follows by definition, so (i) and (ii) are equivalent.

We show the equivalence of (ii) and (iii). Take, in the notation of Pro-

position 1.5, X X and S {n, n-i,...). Then L(S) L, and by that
t n+lns

Proposition we have that (iii) is equivalent to the existence of X L suchn

that L i X - X. The latter, clearly, is in turn equivalent to the
n n+l

existence of the required innovation space N+ I . f]

Remark. By Theorem 2.2, we may write X = V + Z where V L and•n n n n -,"

n ' N If IX I has a right Wold decomposition, we have X = Y + Z
n k=() 4 n -k' n n n n

as in the comment following the definition. In this case, we must have V = Y
n n

and 7 = Z .since L c L and N = fX - E(XIZ ): X EL}
n n -' o -0 k k-i k

X- E(XZk ): X L i = N and the decomposition is unique.

Left innovations and Wold decomposition
S.-

We now examine 1.eft innovations and Wold decompositions. Their definitions

are obtained by reversing the arrows in the definitions of their right counter-

%.

%:
- - . . ..w,.... , w ml mm l . l. . . . . . . . . . . . . . . . . . .... .. . . . . ... I



2.6

parts, and ignoring the requirement L I N (or L i N ) for the Wold decompo-
n m n m

sition (as N I L follows from L = 0 N ) L_. Also, the "basis
m n n 'kO n-k 4 .. Aste"ai

property" of 4D N is automatically satisfied, as can be seen from the
k=O -*n-k

argument following the definitions of * and D.

As conditional expectation is an appropriate notion for the study of right

orthogonality, the metric projection in L is an appropriate notion for the

study of left orthogonality. For completeness we include the needed definitions

and preliminary results here in a compact, self-contained way (see 15 , 9 , 13]).

Let (L, 11.11) be a Banach space, and M a closed subspace of L. For x c L,

an element m E M is called a best approximation to x in M if lix - m X1 < lix - M11

for all x E M. If L is reflexive and strictly convex (as we henceforth assume

throughout) m exists and is unique (see [13]). In this case we define PMx = m
x x

and call PM the metric projection onto M. PM is continuous, bounded, and idem-

potent, but not in general linear. In fact, if PM is a linear operator for all

closed stbspaces M of L, L must be isometrically isomorphic to a Hilbert space

(see [13]).

The relation between orthogonality and metric projection is illustrated by

the following two standard results.

Proposition 2.4. Let Q: L - M r ar o-.r atO2 (not necessarity linear). Then

Q = Pl if and only if (I - Q)L _ M.

Proof. Q = P if and only if lix - Qxli < ix -mlu for all m EM and x E L, if
M

and only if lix - Qxli - lix - Qx + mil for all m EM and x c L, if and only if

(I - Q) ± M. L J

Proposition 2.5. x i M if and only if PMx = 0.

Proof. x I M if and only if lix - mll J lxii = lix - 011 for all meM, if and

only if PM X 0.

..................

" "2- ,--i " -<[-i-- '- - .% 'i.
"

i i ." < 1. 1-',-ii 2" 2" .:.2'.2 ,2 .2 i" ." i-'i-,.. ..... ... .-. ,.. . . . .,.. .
. .

. .
..

.. . .".".'. .2""17"i-,2
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Although PM is not a linear operator in general, the following known

"quasi-linearity" properties are true and will be needed for the proof of

Theorem 2.10.

Proposition_2.6.P ('4x) = XP x for .x.aairq a and x . ,lo, ['(X + m) =
______________ 2.6 >1 M

PMx + PMm for all x f L and m -M.

Proof. The homogeneity is obvious. Also, for fixed x c 1, m c M,

l(x + m) - (PMx + Pm) 1 = lix - P x 1 Hix + m - m'l.M

for all m' iM, showing PM(X + m) = PMx + PMm. I]

Proposition 2.7. If M has codimenston one in L, then P is a linear operator.

Proof. We show additivity; the homogeneity follows from Proposition 2.6. Let

\M be non-zero. Then for xi,x 2  L there are unique m. M and scalars
J

a.J such that x. = m + a z Then by Proposition 2.6,

PM(xl + x) = P((ml + inm + (a1 + a )z)

- m1 + m 2 + (aI + a 2)PM z 0

= PM(ml + a z0) + PM(m 2 + a2 ZO)

P M + PM 2 "-

We now apply these facts to our situation. Call L Lo = p{X -°<n <-}+O n Lp ( ) -
nL

I <p <c. Since Lp is reflexive, so is L. Denote by P the metric projection of
n

L onto L . It turns out that every SaS sequence has left innovations:
n

Proposition 2.8. {X } has left innovations, both linear and non-linear.nt

Proof. Define N = (I - P )L By Proposition 2.4, N L L
n n-i n' n n-1; and since

Pnl L we have Ln n- N. The proof for left non-linear innovations

is identical.

.....................................-.-..-...-............... ... ...

7 : i i 2" i i ' :. .'."'. ' .. ' " .." '< ' " ' " ' '. ..: .' '¢ '2 '.' ¢ ..: '- • ¢ .. . .-. -. . . " . .-.. .-.. -. '., .-. . . .- ..... -. -
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Thus no conditions are needed to split off a "left orthogonal" innovation

space. But, unlike the case of right innovations, this is not enough to produce

a left Wold decomposition. The problem lies in the impossibility of developing

an argument like that of Theorem 2.2, as the following example shows.

Example 2.9. There exist one-dimensional SxS subspaces Mi, 2, M 3 such that

M. I Mk for all j # k, yet M1 + M2 is not orthogonal to M hence

( k2)  1 23 3z  1
0C M M)$4)M #M ON ONP
3- 2 3 3+- 2*K-i1

Proof. Let 1 <a <2 and define the functions

fl = 1A -1B +1C - 1D
1, A 1B +C D9

f = 1A + 2"l - 1C - 2"1 '

and f = where A = 0,4), B = j','),c = ! ,).and n = [ki I. it
3 10,11 w

may be easily checked that

ffClfk dm = 0 for j # k,

and
f«l+  2 < v- >f  2a1 13c-l)

J\ + f f dm= '-,( + 1 3- > 0.
2 3

By Corollary 1.3 this implies that the SUS subspaces M {,f1f.(s)dZ(s): X,,-R}
j "0

have the advertised properties.

There is still, however, a nice characterization, in terms of the metric

projections P , of those processes having a left Wold decomposition.

Theorem 2.10. The foZitowingq are equivzlent.

(i) {X } han a left Wold decomposition.
n

(ii) The metric nrojection orcratns P L -o  L are linear.
n +" n

Ij............. .......
I' . - ." " . - " . . " ". . " " - °" " ' . .' '' : .' . , . - • " - " - " . . . , ," - " 7 -. f . * " -" " ' . -" -4- . - . " -. '' ', . ' . .- . " . . - ' . . °
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(iii) The operators P conrute.
n

(iv) Denotin.? b7 p the rest,,.tion of P to L , we have that for all
n,m n m

k 1,

P P .. P =P
n,n+l n+l,n+2 n+k-l,n+k n,n+k

Proof. We show (iv) --> (ii) (i) -> (iv) and (ii) -> (iii).

Assume (iv) holds. By Proposition 2.7, each operator P n+,n+e+l is linear,

implying each P+k is linear. P being linear on each L+k, is by continuity

linear on all of L+,O, giving (ii).

Assume (ii). Define N = (I - P 1 )Ln, and let Z E Nn. Then Z i L by
n1n n n n n-i

Proposition 2.4 and thus Zn I L n- for £ 1 i. By Proposition 2.5, P nZn = 0.

The linearity of Pn shows P n-k (Zn + Zn-1 +. ..+ Zn-k+) = 0, giving us by Proposi-

tion 2.5 that N + N + .+ N . L and hence that
n n- 1 n-k+l n-k'

,k-i
1n = ( + = N ) n We now note that Proposition 2.1 and its proof are
n L0- n-t

valid with all arrows and orthogonalities reversed, provided we change the esti-

mates on m and k to read Ilk lm + 1 1  an Ilmn n n

(Also, we may ignore the proof of the basis property of Z 0 by our remarks
n r

following the definition of left Wold decomposition.) Applying this version of

Proposition 2.1, then, we have that (i) holds.

Assume (i). Then we may write for all n and f - 1,

L = N 4 N 4... N * L This means that writing Y E L+, (uniquely)
n'+t n+t -)- n+f-l *n+l -*n +

as Y = Z +...+ Z + Y with Z. t N. and Y E Ln, we have P (Y) = Y
n~l nnj .n n ns n,n+t n'

Then

P n,n+l* Pn+k-l,n+k(Zn+k + ..+Z n+1 +Y ) P nP +l*** Pn+k-2,n+k.1(Zn+k...+Zn+1+Y r

P (z + Y
n,n+l n+k n

Yb

n

- (Z +...+ z +
n,n+k n+k n+1 n

I'hs, (iv) holds.

-----............................................... ... .



2.10

We now show (ii) -'(iii). Assuming first that (ii) holds, we note that

for arbitrary W c L+.0 and m !5 n,

P P W =P (W -(W- P W)) = PW -P (W -P W) = P W = PP W
mn m n m m n m nm

since P (W - P W) = 0 by Propositions 2.4 and 2 5. Hence (ii) implies (iii).m n

Conversely, assume (iii) holds. We show by induction on k that P is linear on
n

each L n+k whence it is linear pn L+m by continuity. Pn is homogeneous by

Proposition 2.6; we show additivity. Clearly, P is additive on L . Assume itn n

is additive on L Let WI,W be arbitrary in Ln, and define
n+k-l' 1 2 n+k'

Yj n+kl and Z W Y  Note Z L k- By Proposition 2.7, Pn+k-

is a linear operator on L n+k and this coupled with (iii) and our induction

assumption gives

Pn(WI + W2 = PnPn+k-l(Yl + Y2 + Z1 
+ Z2 )

= Pn(YI + Y 2 )

=P Y + P Yn I n 2.

= nPn+k-l(Yl 1+ ZI + PnPn+k-l(Y 2 + Z2 )

=PW1 + Pn W2 "

Thus (iii) implies (ii). The proof is complete.

Remark. The observant reader will have noticed that we make no use whatsoever

of the SQS property of {X ) in Proposition 2.8 and Theorem 2.10. Thus these
n

th
results are true for any p order process {X } (i.e. EIX Ip < - for all n) with

p >1. Of course, the definitions of innovation and Wold decomposition in this

case are with respect to the Lp orthogonality i.
p

We do not have a characterization of {X I for which a left non-linear Wold
n

decomposition exists. The method of proof of Theorem 2.10 will not work to .]
. . . i



2.11

prove a non-linear version of that theorem, as it uses the property that L is
n

codimension one in L n+I  However, the non-linear analog of the proof that (ii)

implies (i) is valid, so that linearlt' of the metr', , roiotions p L Ln + n

impZies that {X } has a left non-Zinear WoZd decomp>osition.
n

Innovations: Right and left, nonlinear and linear

It is of interest to compare the various types of innovations introduced

earlier, which unfold the information of a SOLS sequence {X }.n

The right nonlinear innovations {1 r} are given by the residuals of the
n

regression of X on the past X
n n ?i

Ir  X - E(X Ix
n n n n-1 ".

The right (linear) innovations {Ir} exist precisely when these regressions are
n

linear (Theorem 2.3) and then eql'al the right nonlinear innovations, Ir = jr .

n n

The nonlinear left innovations { } and the (linear) left innovations i1i
n n

are given by the nonlinear and the linear prediction errors of X from the past
n

In =Nn - LXnIxn-l''

It = X - L(X IX ...
n n n n-i '

where Nl(X Ix is the "best" nonlinear and L(X Ix is the "best"
n n- n Xn-i

linear predictor of X from the past X .... i.e., the element of the non-
n nl

linear span of the past L and ef the linear span of the past Ln, which is
n n

nearest to X in L -norm (i<p<cy).
n p

The nonlinear and linear left innovations coincide, I= , if and only
n

if the best nonlinear and linear predictors of Xn from the past Xn_ , .  oincide, ..

°=c

....• .-- .:.-.-..-. -. ..--...:-.- .- . . . -. .. .v ...- -- ---.- ----v - --.--v-...-.. . . . . . v v - .-,--.- -----..... .. . . .
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i.e. if and only if the metric projection of X onto L n coincides with its•"n n-i

metric projection onto L if and only if there is a Yn ELni such that

E(X - Y)<P->z = 0 for all Z rLn n --l

or equivalently

E{(X n - Y )<P->IX_ ,...} = 0

(in which case of course Y = V - )
n n n

The nonlinear left and right innovations coincide, 1r= I, if and only
n n

if the regression predictors from the past coincide with the best nonlinear pre-

dictors from the past, E(Xn IX nl... = NL(Xn IXnl,...), if and only if

E{[X - E(X IX nl,..)<P-lIXn~l,...} = 0
nn n- "* -,'

This condition is a form of weak conditional symmetry, and is clearly sati..fied

if the conditional law of X given X is syetric (since it will then be
n n-l'"" " s ci

necessarily symmetric about its conditional mean E(Xn IXn-l,.).

The right linear innovations exist and equal the left linear innovations,

r
Ir I , if and only if the regression predictors from the past coincide with

n n

the best linear predictors from the past, E(XnX 1  .) L t(XnJXn, ) ifn n n..l.... ,

and only if E(Xn IX n,...) is linear and

E[X - E(X nX }...)]<P->Xk} = 0 for all k<n.

This is weaker than the previous conditional symmetry condition and is likewise

satisfied whenever the conditional law of X given Xn .. is symmetric. Thus
n n-i'**

symmetry of the conditional laws and linearity of the regressions implies that

all types of innovations coincide.

J* '5 5 .. .
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So far we have limited the discussion to one-step ahead prediction.

But the Wold decompositions and innovations introduced here are precisely

tailored to handle the general m-step ahead prediction; and indeed any esti-

mation problem based on observations of the past of X. To simplify the no-

tation we will write the expression of the m-step predictors and their errors

in terms of innovations only in the stationary case. Let

x r+ r  .,,-
n n +k= -n-k

be the right nonlinear Wold decomposition of X, which always exists. Then

1r=a , and thus it can be written in the form
n On

roo ak

x yr + Y - r
n n k= a0 r n-k

a0

Tt then follows (as in the proof of Theorem 2.2) that the m-steps ahead

(m 1) regression predictor is

r0 a k

E(X Ix ... yr + a k Ir
n n-rm' n km r n-k

a0

and the regression prediction error is

r

m-l a r

X -EX X - T k rX n E(X nIX n  m,... )  Y r n-k " '

k=O a_0

If a linear right Wold decomposition exists (cf. Theorem 2.3), then one

simply replaces V by Y and I by I.

Now assume a left linear Wold decomposition exists (cf. Theorem 2.10).

Then we obtain likewise

Z
-;;?: :-: ->';-Y '-: '-V ;-''-:z-.-:--'-:-'-v- "--'.:-> '-:;-:;-;;- ;-; ;;>>:>;;X-.:.>-;;:; ; ..-...- -."..-", ....-. ..-".. )
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X =y +
k='0 a 0

from which it follows that the rn-step ahead best linear predictor is

ma

L( x Y + x a n-

k a0

and the linear prediction error is

x -L(X ix ,.) =- I
n nn-rn' k= n-k.

k a0



3. Independent Decomposition of Stable Sequences

As we observed following Corollary 1.3, independence implies two-sided ortho-

gonality for SuS random variables, but not conversely. Thus we should not, in

general, expect as in the Gaussian case that the innovation subspaces in a Wold

decomposition are independent. In this section, we study those processes for

which this is the case.

Using the notation of Section 2, we say that a SoS sequence {X I has tnde-n

, nt innovations if for each n we can find a subspace Nn so that L n= + n

with Ln 1 and Nn independent. To symbolize this we write L n=Ln- N We say

that {X } has an independent Wold deco rposittion if there exist subspaces {' k) so
nha ko ahnL 0f

that for each n L Z N +L -  where TL N k } are mutually independent
n k= -k - c'W

(in symbols, L = (Z $N n ) $L ). If {X } has an independent Wold decomposition
n k=O n-k n

then clearly it has both right and left Wold decompositions and all three coincide.

The independent Wold decomposition for stochastic processes with infinite

variance was studied by Urbanik (16,17,181 for strictly stationary processes

"admitting prediction", and by Thu [15] for random fields. Here we give spectral

necessary and sufficient conditions for the existence of such a decomposition for

S"S sequences.

Theorem 3.1. Let 1 < a < 2 and let {X } be a SaS sequence, represented t .n

f Tho foZZowini are equivalent.

i) {X n has independent innovations.
n

(ii) {X n has an independent WoZd decomposition.
n

(iii) For ual n, f = g + hnT where gn C sP{fk k-n- l} and

f *h = 0 a.e. for k n-li
k n

F al n = aknnk + n' where 14n m 3{fk: km},

spf: k n} =nsp{f. k-<m} + _sp{$: kn}, C= 
0.0. :'or

a1 k, t, and 0k = 0 n.e. for alt. k e C.

................ ..
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Proof. We show first that (i) is equivalent to (ii). Assume (i) holds, and

observe that for fixed n we may write

L =L ON
n n-i n

=Ln_2 40 Nni 0 Nn

=L Lnk 1 ONn~ *... Nn.
Ln-k-i n-k Nn

Choosing 1 <p <ct, and applying Proposition 2.1 (remembering that independence

implies orthogonality), we get that L (Zk=0 N n-k L_. and that each

Z F Zk=O f Nnk has the appropriate unique expansion. Since the spaces Lnkl,

Nnk,...' N are mutually independent by the construction above, the mutual in-

* dependence of {L_, N k eZ} follows. So (i) implies (ii). Also, (ii) implies

(i) by definition.

We now deal with the spectral conditions (iii) and (iv). Recall Schilder's

result that SaS variables are independent if and only if their spectrai representa-

tions have almost disjoint support.

Assume (i). We may then write X = Y + Z with Y ELl, and Z independentn n n n n-i n

of L Denoting by {gn,h} the representatives of {Y ,Z }, we see (iii) holds.
n-l* npn n n

Conversely, if (iii) holds, we let Z be the random variable in L which isn n

represented by hn, and let Nn sp{Z ) Nn is independent of Ln_ since f khn =0

for k<n-1. It is clear that L L + Nn, so (i) holds. This shows (i) is
n n-i ng

equivalent to (iii).

Assume (ii). If dim(N ) # 0, choose a non-zero W. EN.. Otherwise, let W. = 0.
• : J J

*" Let {$j} be the representatives of {W.}. By hypothesis, X has an independentj" j n

expansion X = Y + w a W here Y E L . Letting {W.} represent {Y.}, we
n n k=n knn-k' w n

o

have f = + E an with n E nsp{f k<m}. The relation
n n k=O knn-k' n m k

°
. -. -. - *. : "> *. . .: . .. . " . ." "
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L = L_* kO N translates in representation space to the remaining state-
n k0O n-k

ments in (iv). Hence (ii) implies (iv). That (iv) implies (ii) is easily seen,
since (iv) implies (iii) with g = 'n + Z ak n and h = a . There-

n n k1 kn n-k O,n n

fore (ii) is equivalent to (iv) and the theorem is proved. L.

In the stationary case, this result takes on the following form, where we

assume for simplicity that {X } is completely non-deterministic, i.e. L_= {}.
n

Theorem 3.2. Let 1 <a <2, and Zet {X I be a SaS sequence represented by If }.nn

Then {X ) is stationary, completely non-deterministic, and has an independent
n

Wold decomposition if and onZy if (iv) of Theorem 3. 1 holds with tp = 0, and with

a k,n and 11 n'i independent of n.

Proof. Assume first that {X n is stationary, completely non-deterministic, andn .

has an independent Wold decomposition. Let S be the canonical shift of {Xn}-

nni.e. S is the isometric linear extension of the map SX n= - on LP(Q,E,P) -

Since S preserves joint distributions

L n N =L = SL = S(L ii = SL 4 SNn-l n n n+l n n+l n n+l

= L * SN
n-l n+l

This implies SN = N . Choosing a non-zero W E N and defining Wk = S-Ik,
n+l n 0 0k0

we see that {W.} is an i.i.d. sequence with Wk E Nk. By our assumption, then,

we may find ak,n so that X = a W for each n. Note thatknn k=0 ak, nn-kfoeahn

annk X a SW a
k=0 a Wn SX n+I k,n+l n+l-k ak, n+Wn-kM0k= 0 k: 0

whence ak a does not depend on n.
k k,n

Letting {P.} be the representatives of {W.I, we have that fn = k On-k"

-- i- 7" ".• . .i....................-i..- ..-i, .. ' ',-......,..... i....-.....'...........-...-''
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That IIP.1I is constant in j follows from the fact that {W.} is identically

distributed, and that j' 0 a.e. for k # j follows from the independence of

{W.i. _sp{fk: k<-n} = sp{$: k n} since L = sp{Wk: k<-n}, and the first impli-"

cation is proved.

For the reverse implication, let W. EL. be the SUS random variable repre-

sented by cj, and let N = sp{W.}. Clearly, {W.} is i.i.d. and n k=O ak Wn-k

This moving average is stationary and completely non-deterministic.

n = sp{W: k<_n} since sp{fk: k < n} = sPPk: k-n}, proving the theorem. U

L

. . .



4. Examples

We present here some examples of SOcS processes having or not having

various of the decompositions discussed in previous sections. They are in-

tended to illustrate the theorems we have proved (although they do not ex-

haustively do so), and more importantly, to provide some feeling for what

is and what is not possible regarding these decompositions. We should note

at the outset that in the Gaussian case a = 2, all aforementioned decomposi-

tions exist and coincide; and the situation for a <2 should be compared

with this.

Example 4.1. Certain autoregressive and moving average ScS processes have

Wold decompositions. Specifically, let {n be a sequence of i.i.d. ScS
n

variables. If for all n, {X I satisfies either
n

K
= X x + with F independent of Ln, or

n+l k=O k n-k n+l n

(ii) X Kwith EcL
n k kn-k n n

then {X } has an independent Wold decomposition.
n

Proof. In the case (i), it is clear that {X I has independent innovations,
n

and so by Theorem 3.1 has an independent Wold decomposition. The existence

of the decomposition in case (ii) follows by definition (with Nn =sp{n}).

Of course, left, right, or two-sided decompositions exist for such {X
n

when the appropriate hypotheses of left, right, or two-sided orthogonality

of { n are assumed. I.

If Fn i Ln however, a moving average as in 4.1(11) may not have a Wold

decomposition, as the following example shows.

Example 4.2. There exists a stationary ScS moving average that has a left

Wold decomposition, et does not have a right or independent Wold decomposition.

Specifically, let (nnI be an i.i.d. sequence of SaS random variables,
n n=-

. . . .. .pg..... . . . . .
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I <2. Set S = n 2C Then {Xn} does not have a right (linear) Wold

decomposition, yet does have a left (linear) Wold decomposition.

Proof. To show {X } does not have a right Wold decomposition, we proceed as
n

follows. Assume that {X } does have a right Wold decomposition, in which

case we have E(X n+lIXn9_X nl ." .  Ln by Theorem 2.3. We show that {Xk: k - n1

forms a basis for its span, whereby we may write E(Xn+1 X ,X n l,") = k Xn-k

for some {X k}. We then determine, using orthogonality, the only possible choice

for the sequence {X k}, and show that all necessary orthogonality relations do not

hold with this choice, completing the first half of the proof.

To show that {Xk: k-<n} forms a basis for its span, it suffices to show
k-

there exists K such that

M NI1 x KII Y aXn 11
j=O j n-j p =0 jn-j p

for all B. and all M<N. Recall that for any 1 <p <X there is a constant

c =c(p,a) such that for all ScS variables X with representative f,

llxlip=cllf 1. Note also that we may represent {n } by {l [n,n+l] on L (IR).

Hence

L L

j=O 3 n-j p _jO J n-j n-j-lp

L

= IlaO n+ ( 3-S 1 ). 2a~lI
S n j=l - n-j L n-L-lp

L
= C [I Il + I'. -2a j I +2B I)

j=l 3

C4
C .S

L'

It thus suffices to find K such that SN a We claim that K= 2 willSMo

....................................................

. . - ."

. . .
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satisfy this requirement. To see this, call -= 2B+Z1=I- i andJj -j .-1
'M+k--"
=M k Then

k

N
N + 6 2 -+ 22
N=M+l + 2N

S M (i + 12B Mi

B. -2 2 1 ' 12NI6N

Smin (1, j=M+l O J -  + 2  )
12BM I  .

N-M
= min (1, Y IYjl-Yj /21' + N_M •

j=l

Putting n =N-M, we have

N-M
I lyj I - Y /2  + yN- = 1 2 1a + lyI -y2 /2 1 +..

j=1 j- -. Y

-Yn-1 -y/2 10 + 1Iy .]

We may verify this is 2 as follows. If not, then all terms must be

less than 2
- , i.e. I-y1 /21 < , l -y2 /21 < , etc. But II-Y /21 <

1 1 2

implies y1 >1, and 1y -Y2 /21 < with y1 >1 implies Y2 >1, and so on until

we reach y >1 in which case the last term is not less than 2 . We now

have that {Xk: k-<n} forms a basis for L
n

Under the assumption that X does in fact have a right Wold decompo-
n

sition, we may write E(X IXnXnl,. . = zoo X for some choice of
n+l n9 nl** 'k=0 k n-k

1A }. Also, the k must satisfy X Ix -k A X for all j ->0 by
k k n-j n+l k=O k n-k

Proposition 1.5. This requirement is equivalent, by Lemmata 1.1 and 1.2, to

-
-

*.*. . W . .9 J ..- • . ° . * - o° . ° . ° . °

• ''', . ' -. '."-" -"I" .' . ,- .',- ' -'.. ." ", -". .". " - .' ' ," , ', ' , - ,
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0 EX (X ko0kX)
n-j n+kl n=

= E ( n - - 2 n j - l) ( n l 2 C n k =0

k

t1 = 2 ctc+2(1 c

A = 2(1 + 2-' ) X - 2-ctx k>0.k+l - k-1'

A solution to these equations is determined by specifying A0. The solution

for k - 0 is

-o-C
Ak = 2k(

l  
2 -t)-l[21-ct(l -2

-ak) + (i -2-kl)0 ]  '

It is easily seen that limIx kI = O unless X0 =- 2 l -  Hence we must have that
k- 0

1-0, k+1x = -(21)

and furthermore that

Xn+l X =n-k 2(1 2- )  (2 1-a k
k=O k=O

To obtain our contradiction, recall that all of L (not just each X .) must
00l

be orthogonal to X - x AX Check that for j >0,
nl k=0 k n-k*

00

E(Xn-j + X nJ_1)  (Xn+I - k XkXn-k )

fl j + k=O0,

EQn - - +l - 2(1 2 "-a) Y (2 ) k n-k )
k=O n-k

. . ..... . 8, ',,'-- ,, a .--.. . ~iukl'r-t-,I--.ultl . .ulu~ ..
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1-CL aE-I 1 -a 2= (const # O)[l-2 -2 (2 - ) I

2 -aL= (const 0 O)[l - 2 ,

which is non-zero for o <2, completing the proof that no right Wold decompo-

sition exists.

To show iX I has a left Wold decomposition, it suffices by Theorem 2.10 to
n

show that the operators P are linear. Clearly these operators are linear if
n

and only if they are linear on each LM9 M < -. By our arguments above, {X n' n-

is a basic set. It is thus a simple matter to show, in view of Proposition

2.6, that P is linear on LM if and only ifn,,'

M M
() P ( akXk) = akPXk -

k=n+l k-n+l

Since Xk is by definition independent of (and thus orthogonal to) L for
n&

k n + 2, the RMS of (-) is just an+iPnXn+l, or Pn(an+iXn+l), by Propositions

2.5 and 2.6. Recall (Proposition 2.4) that P (anXn) is the unique Y L
n n+l n+

satisfying

E(a X - Y)<P->X = 0 for t S n.
n+1 n+1"

The LHS of (F) is likewise the unique Y' L satisfyingn

M
E( Y akX k - Y)= 0 for C n.
k=n+lk

Now represent {Y',X n -0 < n < } by {g',f n < n < and recall that

independence of Xk and X for jk - _ 2 is equivalent to fk and f having

almost disjoint support tor like indices. Thus for 5 n,

. . . ..... . .. . ........... .. •"" 4""" - ... "" ' '' ' ' '



4.0

M .
0 E( X a X - Y,) 'x

k=n+lkk
M

(const. # O)f( X akfk - g')< l>f dm
k=n+l k.k

(const. o)f(a n+I fn+I - g') f dm

(const. # O)E(an+X+ 1 - x

Hence Y = Y' (i.e. (t) holds) and {X n has a left Wold decomposition.n ,

For the sake of completeness, we also compute this left Wold decomposition.

Since {X I is basic, we must have that PnXn = Z x for some choice of
n n n+1 k=O k n-k

'Ak}. Analogous to what was done for the right Wold decomposition for this pro-

cess, we may use the orthogonality relations X - kAoX .. X for e n
n+l k=Q k n-k .

to derive equations which {X k } must satisfy. We omit the details, and state
kr

only that the analogous arguments show that

k -) k+l

provides the unique solution to these equations for which ZA kXn-k converges.

Hence the left Wold decomposition for this process is given by: L.. = {O};
1 1

IC 1 ) l-Cikx  i I  2-aZl
N = sp{I f where i = (2 ) k and X = -2 Ine

n n n-l"

Exmple 4.3. All sub-Gaussian sequences have identical right and left Wold

decompositions, yet never have independent Wold decompositions.
1 ,

Proof. Any sub-Gaussian process {X } may be represented as X =A G , where
n n n

{G I is a mean-zero Gaussian process and A is a positive c/2-stable variable,
n

" " " " " - " " " " " " " " - ' " ' - ' , ' ' -. " ' ' " " ' " . ' . ' .' ' ' ' - " " ' ' . ' . ' ' ' ' ' " " " ' - ' -" ".-. . . . . . " " ' ' ' ' - - 'p

'3 " " " , _.' . .. .' "" " ". "', : , ,"" < " : "-. , , " ' " ". . " " - . " " " - " "" ," " " "' " " " " " " " "" " " " " " . -" , . . .. . .. . . . . .. ,. .
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independent of {G IL Let L' -sp{G k n1 and let L' =L' _4 L" N'
n nk n -~ k0 n-k

be the standard (independent) Wold decomposition of {G 1.Then
n

n, n',L A '. n letting N = AN' we have the decomposition
Ln 2 ' L AL n k k
L =L + Z N .That this decomposition possesses the appropriate6

n -00 k0O n-k L

orthogonalities follows from the fact that if A,* Z. and Z7 are independent

with ZVZ 2mean-zero Gaussian, then Al 1 and A Z 2are two-sided orthogonal:

1'-J 2/ 1PJ 2/. <P

E(A Z)<pl (A Z) EA /Z <Pl> EAp2EZ 1 EZ =0.
121 2 1 2

The decomposition cannot be independent, since L ncontains no non-trivial

independent random variables (cf. Lemma 2.1 in [ 1 ].

Example 4.4. Let {~}be i.i.d. SaS, Il<a <2. Let 0 <JAI <l and define
n

x= k= k ' Then IX 11 has a right Wold decomposition, but has no inde-

pendent or left Wold decomposition.

k'Proof. Let piX and define Z =X -1pX 1  Since X V= 4kPZ. we

haveL1 SPXk: k! n} =SP{: k n. We claim that {Z nI is not an indepen-
n nU

dent sequence, yet has a right Wold decomposition L = ~ hr
n kO$N-k' hr

N. sp{z.l.

Note Z = (-> + (I - XI')Z'xk Represent {,}by {I1
n n-l n=0 knj j

I 1[jj~llSO that {Z} is represented by {f 1, where

fx +> . (1 - XJx) k=OnI

Onn- kl n-k n

a. and hence that L I Z
jn n+1

L
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fla 0 ( Y. XA *) + Y a kI nki f n+1dm
XR j=0k=

7C 1 ()<a -1>l I[ A<cl> I + (1- I x c) k I Jdm

<ct-> [X~cti> xCt) 00 xk(xk+l) <Ot-i >I kO n~
k= 0

00
0 k=0

=0.

Now observe that

E(X nlIx nx ... ) =* E(Z n+ + x n x n9x ..)** x n

Hence {X n} has a right Woid decomposition by Theorem 2.3. However, the spaces

N are ~>~independent, since f -f #0 a.e. (It is aiso clear that X isk k IE n

not a sub-Gaussian process, since L contains independent random variables.)
n

We now wish to show {X I has no left Woid decomposition. We do this by
n

showing that condition (iii) of Theorem 2.10 is violated. To this end, let

P nbe the metric projection onto L n. We show that there are constantsb1

and b 2such thatP nX =l b 1X nandP nX n+ b2X yet

2
Pn-4-I n xn+2 1)n Xn+2 b2 Xn bIXn Pn Pn+i n+2'

showing P does not commnute with P
n n+i'

00

Let Y~ =Pn xn+j' j = 1,2. Then necessarily Y b1 xn + k=l a k n-k since

L n= sp{x -2 ~ .... } and {X ,P,.. is a basic set. By Proposi-
nn "''n-2 n n-l n-2'**

tion 2.4, Y 1 must satisfy X l -y Y1L L.n The requirement X nl- Y1 .L , j 5n -i

impl ies

0=E(X 1  -b X- a E

.. ... . . . . . . . . . . . . ....

J- k..
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which in turn implies a. =0 for all j, and Y1 =b l Xn  To find b not-, that
.3 n'X -b X1-1knk

Xn n = -bl, + (A -b )E and compute

0 = E(X - b Xn<P->xn+1 i n n

<OC-i> -1 <cI-i> k <Cc-l>Xk
(const. #O)[-b 1  + ( - b 1 ) Y (Xk)

k=1

-<0(-l> I <a-l> 0)I]["

= (const. #O)[-b x  + (X- - b) < Xj( 1 - IOia ]1 %|

Solve for b to get

1 ( ct)q i IX1Ib1= " q =C-

Using the same methods, we find that Y =b2Xn where

=1 ___( 20t)q

2 =2 (l_[X12a)q+(X11)q

2
Now, b =b if and only if

2 1

(1 - 12t) q + 11)= (1 - 0) q + (t) q 2

if and only if

( (1- XIa[)q  + 2( 1 X I . ,)1q-

Since I<c(<2 and 0< 1XI <1, we have that q>1 and

Il - Ii) q  + 2(1 XII) q  < [1z- I XI' + 21/ l ~q  1

< [I + I Xl+ .

2This shows b #b and hence that {X } cannot have a left Wold decomposition. jjThsshw 2 1 b n

ITinXd(

Example 4.5. The stationary sequence x = f-e dZU) is orthogonal but

has no right or left or independent Wold decomposition.

: ..i--..:-..: .. T-.-:..?: ?:.:... ~ ..... .. .-...... •........ .....-.....................- :-:-.:.:.,:.:,..2.:2.
, ~~~. .. ..... . . .. . . .... . . ..,-" ." ".,a,

,
't..I l g. . . . " Y•

"



4.10

Proof. Since for m#n, fI' (em) <Q1>e il 0 f_ e-imei = 0, it follows

that X .LX
m n

We show that sp{X n-2X n 1 } is not orthogonal to X , i.e. that

fit eiX) <rt-l>ei2\ d
f (a + be ) e 1dA does not equal zero for all a and b. 'raking a=h,

we have

( (1 + e e i  
= f (l +e - i )ei2X dX

-f -7 l+e i I 2-c

2x/2 7
(2 7cos2 X + cos X2 f 1- (Y/2 dX.

0 (1 +cos X)

The numerator of the integrand vanishes at 0 with cos 0 = , is positive on

[0,0) and negative on (6,7), and of course f O T c os 2LA+cA)d = 0. We thus

have

0 IT l~o(*)I = f+f OI-a/2 dX
0 0 Ui+ Cos X)

2 c/ 2 0 T

< If + f}I(cos 2 + cos X) de(i +Cos 0)1 - ot / 2  0 0

= 0.

Assume that tX I has right innovations, i.e. L = L N. Then
nl n n-i n

X Y + Z where Y cL and L i Z = X - Y . A straightforward adapta-
n n n n n-I n-i n n n

tion of Theorem 7.1 of [11] shows that {X k -< n} forms a basis in Ln (see

(see [1, p. 6061) so that Y _k,<lakXk, the series converging in every

L p, p <cc. Then X kIX -Y , k n-i, implies a k=0 , i.e. Y =0, so thatpk n n k 'n

L nIXn and sp{X n-X I iXn contradicting our earlier result. Thus {X n

has no right innovations and no right Wold decomposition.

The orthogonality of the X 's implies X IL and thus the best approxi-n n n-i

narion to Xn in 1,k9 k! n -1, is the zero element. It follows that the left

. . . . . . ... . . . . .

... ...... .... . . .. .... ..... ...... .. . .... ..

---. v." ""
. . .. .. .., ,. , . ~ r.. ., .. • ' . . . ' ' " " ,,t ' ,a ,, - -',a "x' m t -' '- - '*- --.
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innovations space L LI D N is N = sp{X }. However N O N is not
n =n-i n fl n n-i n

orthogonal to Ln_2 , so no left Wold decomposition exists. This is so because

Xn+Xn is not orthogonal to X as
n n-i n-2

n nA i(n-1)A<rt-l>i(-2)d = ( + e )X e- i 2 dA
j(e + e ) e d \X (1 + % <e l i2)

= < 0

from (*) and (**).

That {X I has no independent Wold decomposition follows from the above,
n

but also follows immediately from part (iii) of Theorem 3.1 and the fact that

inA
each f (A) = e has as support the entire interval [-Tr,h].

.. .

.... ... .... ... ... .... ... .... ... ...

. . . . . .. .- - -- - -

. . . . . . . . . . . . . . .. . . . . .

. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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